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Stationary core-annular flow through a horizontal pipe

G. Ooms and P. Poesio
J.M. Burgers Center, Delft University of Technology, Laboratory for Aero- and Hydrodynamics, Leeghwaterstraat 21,

2628 CA Delft, The Netherlands
~Received 4 August 2003; published 15 December 2003!

A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core
surrounded by a low-viscosity annular liquid layer through a horizontal pipe. Special attention is paid to the
question how the buoyancy force on the core, caused by a possible density difference between the core and the
annular layer, is counterbalanced. From earlier studies it is known that at the core surface ripples are present
that have the shape of ‘‘bamboo’’ waves or ‘‘snake’’ waves. They generate pressure variations and secondary
flows in the annular layer that can cause a net hydrodynamic force on the core. Using hydrodynamic-
lubrication theory~assuming the core to be rigid! it has been shown that for snake waves the lubrication force
can counterbalance the buoyancy force. For bamboo waves that is not the case.

DOI: 10.1103/PhysRevE.68.066301 PACS number~s!: 47.15.2x
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I. INTRODUCTION

In transporting a high-viscosity liquid through a pipe
low-viscosity liquid can be used as a lubricant film betwe
the pipe wall and the high-viscosity core. This techniq
called core-annular flow, is very interesting from a practi
and scientific point of view. In a number of cases it w
successfully applied for pipeline transport of very visco
oil. The low-viscosity liquid in these cases was water. T
pressure drop over the pipeline was considerably lower
oil-water core-annular flow than the pressure drop for
flow of oil alone at the same mean oil velocity.

Much attention has been paid in the literature to co
annular flow. Joseph and Renardy@1# have written a book
about it. There are several review articles, see for insta
Oliemans and Ooms@2#, and Josephet al. @3#. Most papers
deal with the development of waves at the interface betw
the high-viscosity liquid and the low-viscosity one, s
Ooms@4#, Bai et al. @5#, Bai et al. @6#, Renardy@7#, Li and
Renardy@8#, Kouris and Tsamopoulos@9#, and Koet al. @10#.
These studies deal with axisymmetric vertical core-annu
flow ~the core has a concentric position in the pipe!. In that
case the buoyancy force on the core, due to a possible
sity difference between the two liquids, is in the axial dire
tion of the pipe. It was shown experimentally and theore
cally that both liquid phases can retain their integri
although an originally smooth interface was found to be
stable. For vertical upward flows axisymmetric traveli
waves develop with slightly sharper crests~pointing toward
the annular fluid! than troughs, the so-called ‘‘bambo
waves.’’ For vertical downward flows also ‘‘corkscre
waves’’ and ‘‘snake waves’’ are possible, in which case
interface is not only dependent on the axial direction of
pipeline but also on the tangential direction~although the
core remains concentric in the pipe!. Using the calculated
wave form also predictions were made for the pressure d
over the pipe and the hold-up’s of the liquids.

For the transport of very viscous oil~or other liquids! it is
also important to pay attention to core-annular flow throu
a horizontal pipe. Since the densities of the two liquids
almost always different, gravity will push the core off-cent
1063-651X/2003/68~6!/066301~7!/$20.00 68 0663
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in that case. Experimental results suggest that under no
conditions a steady eccentric core-annular flow~rather than a
stratified flow! is achieved. It can be shown that for a stea
flow a wavy interface is needed to levitate the core. Re
tively little attention has been given to the explanation of t
levitation mechanism. Ooms@4#, Ooms and Beckers@11#,
Ooms et al. @12#, and Oliemans and Ooms@2# proposed a
mechanism based on hydrodynamic lubrication theory. T
showed that levitation could not take place without a hyd
dynamic lifting action due to the waves present at the o
water interface. In their work they assumed that the c
viscosity is infinitely large. So any deformation of the inte
face was neglected and the core moved as a rigid body
certain speed with respect to the pipe wall. The shape of
waves was given as empirical input. They were assume
be sawtooth waves that were like an array of slipper beari
and pushed off the core from the wall by lubrication force
In their case the core would be sucked to the pipe wall if
velocity was reversed. So the slipper bearing picture
obligatory if levitation is wanted. However it was pointe
out by Baiet al. @5# that ~at finite oil viscosity! the sawtooth
waves are unstable since the pressure is highest just w
the gap between the core and the pipe wall is smallest. So
wave must steepen where it is gentle and become sm
where it is sharp, and levitation of the core due to lubricat
forces is no longer possible. To get a levitation force fro
this kind of wave inertial forces are needed according to
et al. @5#.

From their study of the wave development for a conce
tric vertical core-annular flow Baiet al. @5# tried to draw
some conclusions about the levitation force on the core
case of an eccentric horizontal core-annular flow. They c
sidered what might happen if the core moved to a sligh
eccentric position owing to a small difference in density. T
pressure distribution in the liquid in the narrow part of t
annulus would intensify and the pressure in the wide par
the annulus would relax according to their predicted var
tion of pressure with the distance between the core and
pipe wall for the concentric case. In that case a more posi
pressure would be generated in the narrow part of the an
lus which would levitate the core. It is important to point o
©2003 The American Physical Society01-1
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FIG. 1. Sketch of the geo-
metrical configuration.
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again that the study of Baiet al. @5# was for a concentric
core. In a horizontal core-annular flow with a density diffe
ence between the liquids the core will be in an eccen
position and due to the presence of waves at the inter
secondary flows perpendicular to the pipe axis are genera
This type of secondary flows that also contribute to the fo
on the core is not considered in concentric core-annular fl

Another core levitation model was proposed by Bannw
@13#. It is based on an interface-curvature-gradient effect
sociated with interfacial tension: if the radius of curvatu
increases withu ~the tangential coordinate, see Fig. 1! a
downward force acts on the core due to interfacial tension
this paper we will not make a comparison of the relat
importance of the three levitation mechanisms, levitation d
to ~1! hydrodynamic-lubrication forces,~2! pressure forces
caused by inertia, and~3! interfacial-tension forces. Here w
concentrate on a further development of the hydrodynam
lubrication model.

The fact that a levitation of the core does not come fr
lubrication forces but from inertial forces was proved by B
et al. @5# for cylindrically symmetric waves. The waves th
were used in their calculation were bamboo waves that w
periodic in the axial direction of the pipe and were indepe
dent of the tangential coordinate. As found by Renardy@7#
waves are possible that are not cylindrically symmet
waves that are dependent on thex direction and also on the
tangential direction~for instance, snake waves!. It seems evi-
dent that for such waves the forces on the core and also
secondary flow in the annulus will be different than for
core with bamboo waves. So it is interesting to study
levitation forces on the core for the case of noncylindrica
symmetric waves and to investigate the possible contribu
of hydrodynamic lubrication to these forces. In this paper
will show that core levitation by lubrication forces alone
possible for snake waves, contrary to the result for bam
waves. As in the earlier work of Ooms and Oliemans@2# we
assume that the core viscosity is infinitely large. So the c
~with snake waves! moves as a rigid body at a certain velo
ity with respect to the pipe wall. In our calculations the pro
lem of a moving core is transformed into one in which t
core is supposed to be at rest with respect to the refere
system and where the pipe wall has a velocity in the a
direction. The starting point of the calculation is the Re
nolds equation, the basic equation of the hydrodynam
lubrication theory for the pressure distribution in the annul
We will solve this equation by means of a perturbation c
culation with the dimensionless wave amplitude as pertur
tion parameter. From the calculated pressure the velocity
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tribution in the annulus will be derived and the pressu
forces and viscous forces exerted on the core are determ
It is then investigated whether a steady situation is possi
For a steady situation to arise a balance is required betw
the buoyancy force on the core and the vertical compone
of the pressure forces and viscous forces on the core. We
show that for snake waves such a balance is possible.

II. THEORY

As mentioned in the Introduction we start from the Re
nolds equation for the liquid flow in the annulus

]

]u S h2
3

R2

]f

]u D 1
]

]x S h2
3 ]f

]x D56mW
]h2

]x
, ~1!

wherer, u, andx are the cylindrical coordinates belonging
the pipe.u has the value 0 at the top of the horizontal pip
A frame of reference is chosen, according to which the c
is at rest and the pipe wall has a velocityW in thex direction.
h2(u,x) represents the thickness of the annular space
tween the core and the pipe wall.R is the radius of the pipe
and m is the dynamic viscosity of the liquid. In Fig. 1
sketch of the geometrical configuration is given.~It is
pointed out that in this figure the thickness of the annu
layer is much too large to be practical for applications. Ho
ever, the figure is only meant for introducing the releva
geometrical parameters.! The variablef is given by

f5p1rgr cosu, ~2!

where p is the hydrodynamic pressure in the liquid in th
annulus,r is the density of the liquid, andg is the accelera-
tion due to gravity.

The thickness of the annulus can be derived from
relation

h11h25R, ~3!

whereh1 describes the core surface with respect to the p
axis. We assume the general shape of the core to be give

h1~u,x!5h1
(0)F11eS (

m,n50

`

am,ncosmu cos
npx

l

1 (
m,n50

`

bm,ncosmu sin
npx

l D G , ~4!
1-2
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whereh1
(0) is the constant radius of the core for the case t

no wave is present andl is the wavelength of the wave at th
core surface.eh1

(0)am,n andeh1
(0)bm,n are the Fourier ampli-

tudes of the wave with respect to the core centerline.e is a
constant and assumed to be much smaller than unity.~In the
paper of Ooms and Beckers@11# only the termsa0,n ,
am,0 ,b0,n , andbm,0 were multiplied bye in the expression
for h1. All other terms were multiplied bye2 and were for
that reason an order of magnitude smaller. Kronig@14# al-
ready criticized this assumption. In this respect the calcu
tion given in this paper in which all terms are of the ordere,
is an improvement with respect to the earlier calculatio!
We will first solve the flow problem for the general shape
Eq. ~4! and thereafter we will study the special case that
wave has the form of a snake wave. In Eq.~4! we have
omitted terms with sinmu, as for symmetry reasons they ca
not contribute to a net vertical hydrodynamic force on t
core and hence to a compensation of the buoyancy forc

The Reynolds equation is solved by means of a pertu
tion calculation withe as the perturbation parameter. So w
assume thatf can be written as

f5(
i 50

`

e if ( i ). ~5!

After some straightforward calculations we find the follow
ing solution in zeroth-order approximation

f (0)5bx ~6!

and in first-order approximation

f (1)53bx (
m,n50

`
m

m21S npR

l D 2

3S am,nsinmu cos
npx

l
2bm,nsinmu sin

npx

l D

1
~12mW/R!

S h2
(0)

R D 4 (
m,n50

` S npR

l D
m21S npR

l D 2

3S am,ncosmu cos
npx

l
2bm,ncosmu sin

npx

l D ,

~7!

whereb represents a constant pressure gradient.
In order to be able to calculate the net hydrodynam

force on the core~with contributions from pressure force
and viscous friction forces! we need to calculate also th
velocity distribution in the liquid in the annulus. Assumin
the thickness of the annulus to be small compared to the
radius and the wavelength~the basic assumption of th
hydrodynamic-lubrication theory! the equations of motion
can be simplified to
06630
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1

r

]f

]u
5m

]

]r F1

r

]

]r
~vr !G , ~9!

]f

]x
5

m

r

]

]r S r
]w

]r D , ~10!

where v and w represent the velocity components of th
liquid in the annulus in theu andx directions, respectively
The boundary conditions are

for r 5h1 :v50 and w50 ~11!

and

for r 5R:v50 and w5W. ~12!

Integration of the equations of motion~using the boundary
conditions! yields

v5
1

2m

]f

]u F r ln r 1
h1

2~r 22R2!ln h1

r ~R22h1
2!

2
R2~r 22h1

2!ln R

r ~R22h1
2!

G ,

~13!

w5
1

4m

]f

]x F r 22R21
~R22h1

2!ln r /R

ln h1 /R G2
W ln r /R

ln h1 /R
1W.

~14!

As the pressure distribution and velocity distribution
the liquid annulus are now known, we are able to calcul
the net vertical pressure—and viscous force exerted on
core. We assume that these forces counterbalance the b
ancy force on the core caused by the difference in den
between the core and the liquid in the annulus. It has b
shown by Ooms and Beckers@11# that this results in the
following condition:

RE
0

2p

duE
0

l

dx~f!r 5Rcosu

1mRE
0

2p

duE
0

l

dxF ]

]r S v
r D G

r 5R

sinu

5
Drg

2 E
0

2p

duE
0

l

dxh1
2 . ~15!

The first term on the left-hand side represents the contr
tion due to the pressure forces on the core, the second
represents the contribution due to the viscous forces and
term on the right-hand side represents the buoyancy fo
Substitution of the calculated pressure distribution and ve
ity distribution gives the following condition for stationar
core-annular flow~counterbalancing of the buoyancy forc
by the pressure forces and viscous forces!
1-3
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6p2mWe2l
@22 ln~h2

(0)/R!2#

~h2
(0)/R!4 (

m,n50

` S npR

l D
~m11!21S npR

l D 2

3~am,nbm11,n2bm,nam11,n!5pDrglh1
(0)2. ~16!

Equation~16! is very interesting and we make the follow
ing remarks about it.

~1! In our calculation we found that the net vertical for
on the core is only due to the viscous forces, not due to
pressure forces. The mathematical reason is that the vis
term in Eq. ~15! ~with the velocity derivative! consists of
terms containing a product of sinmu and cos (m11)u ~be-
cause of the product of]f/]u and the function ofh1 in the
viscous term!. Such a product can be written as a sum of t
trigonometric functions, one of which is sinu. Substitution in
Eq. ~15! gives a sin2u term, which after integration results i
a net contribution to the vertical hydrodynamic force on t
core. This explanation cannot be given for the pressure t
in Eq. ~15!.

~2! Because of the buoyancy force the core will have
eccentric position in the pipe. The eccentricity is given
the termeh1

(0)a1,0cosu in Eq. ~4! for the description of the
core surface with respect to the pipe centerline.~It can be
shown that in first-order approximation with respect toe this
term describes the vertical displacement of a cylinder w
respect to its origin.! All other termsam,n andbm,n describe
the wave shape at the core surface.

~3! The denominator of Eq.~16! contains terms withm2

andn2. As the coefficientsam,n andbm,n are of the order of
unity, it follows that the contribution to the vertical hydrody
namic force on the core decreases with increasing orderm
and n. To illustrate this point we show in Fig. 2 the ter
M (m)5(n50

` @(npR/ l )/(m11)21(npR/ l )2# as function
of m and N(n)5(m50

` @(npR/ l )/(m11)21(npR/ l )2# as
function of n. So, for each selected value ofm we have

FIG. 2. Contribution of each term inm and n. Harmonicsn
,100 for N(n) andm,20 for M (m) are the only modes that ar
relevant.
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included the contributions of alln values. And for each se
lected value ofn we have included the contributions of allm
values. As can be seen the lowest values ofm andn are most
important for the vertical hydrodynamic force.

~4! From Eq.~16! it is clear that no counterbalancing o
the buoyancy force is possible forn50. The physical expla-
nation is, of course, that forn50 no wave is present at th
core surface. So no core levitation is possible without a w
at the core surface moving with respect to the pipe wall.

~5! If we selecta0,1Þ0 (a1,0Þ0 because of core eccen
tricity! and all other possible combinations ofam,n50 and
bm,n50, the wave has the symmetrical shape of a cos
function in thex direction independent of theu value. From
Eq. ~16! it follows that core levitation is not possible for suc
a wave shape. Stationary core-annular flow is, therefore, o
possible when the wave has a nonsymmetrical shape in tx
direction or when the wave shape is dependent onu.

~6! b is not present in Eq.~16!. So the constant pressur
gradient over the pipe has no influence on the levitation fo
on the core.

Equation~16! can be written in the following dimension
less way:

Dr

r
5

Fr

Re
e2f ~H2

(0) ,L !, ~17!

with the Froude number Fr5W2/gR and the Reynolds num
ber Re5(rWR/m). f (H2

(0) ,L) is a known function of the
dimensionless thickness of the annular layerH2

(0)5h2
(0)/R

and the dimensionless wavelengthL5 l /R. r is the density
of the liquid. With Eq.~17! we can calculate which dimen
sionless density difference can be counterbalanced by
lubrication forces as function of the relevant dimensionle
groups. In the following section~when we discuss a cor
with a ripple in the form of a snake wave! we will give some
quantitative results derived from this equation.

Ooms and Beckers@11# also proved that the force exerte
on the core in the length direction of the pipe per unit
length is given by

Fx5
mR

l E
0

2p

duE
0

l

dxS ]w

]r D
r 5R

, ~18!

or after substitution of Eq.~14! by

Fx52
mR

l E
0

2p

duE
0

l

dxS 1

ln~h1 /R! D1
R2

4l E0

2p

duE
0

l

dx

3S 21
12~h1 /R!2

ln~h1 /R! D ]f

]x
. ~19!

The first part of the right-hand side of Eq.~19! represents the
contribution due to the main flow in the axial direction of th
pipe. When there is no additional pressure gradient in
annular layer (b50), the second part is solely due to th
secondary flows perpendicular to the pipe axis~caused by the
ripple in the core surface!, which are necessary for counte
balancing the buoyancy force. Again in the following secti
we will give quantitative results derived from this equatio
for the case of a core with a snake wave.
1-4



ge

id
pip
e
s
en
a
a

s
to

n
u
bl
to
x

an
A
s-

he

t
a

o

th
th

of
ave
t

s
e
pro-

ke

a
ng

ts
r-

he
ver

e
l-
re
e

ow
gth
ws

s.
he
-

ig.

ce,
The

e.
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III. BAMBOO WAVES, SAWTOOTH WAVES,
AND SNAKE WAVES

Bamboo waves and sawtooth waves have the same
eral wave form

h15eh1
(0)a1,0cosu1h1

(0)

1F eh1
(0)S (

n51

`

a0,ncos
npx

l
1 (

n51

`

b0,nsin
npx

l D G .

~20!

As mentioned earlier the first term on the right-hand s
represents the eccentricity of the core with respect to the
axis, the second term is the constant radius of the cor
case of absence of a wave, and the third term represent
wave shape. As can be seen the wave shape is independ
the tangential directionu. The only difference between
bamboo wave and a sawtooth wave is the shape of the w
in thex direction. It is clear from Eq.~16! that for both types
of waves a vertical hydrodynamic force is not found ine2

approximation. However, we know from the work of Oom
and Beckers@11# that when we extend the calculation
higher orders ine a net vertical force will be found. They
found that the sawtooth wave can levitate the core by a
viscous force. The problem is, as discussed in the Introd
tion, that the sawtooth wave is not hydrodynamically sta
and will deform~in case a finite core viscosity is taken in
account!. Also for a bamboo wave a net viscous force e
erted on the core is found in higher orders ofe. However,
this force is in the same direction as the buoyancy force
the core will therefore be sucked against the pipe wall.
shown by Baiet al. @5# inertial forces are needed for a po
sible levitation of a core with a bamboo wave.

Snake waves differ from bamboo waves because of t
u dependence. There are many snake waves~with differentu
dependence! possible. From Eq.~16! we know, however, tha
for a net levitation force it is necessary that there are at le
two Fourier components with successivem values:m and
m11. We have selectedm50 and m51. Therefore only
a0,n , a1,n , b0,n and b1,n are different from zero. All other
Fourier components are assumed to be absent. So we ch
the following shape for the ripple in the core surface:

h15eh1
(0)a1,0cosu1h1

(0)

1F eh1
(0)S (

n51

`

a0,ncos
npx

l

1~a1,n2a1,0!cosu cos
npx

l D G
1F S eh1

(0)(
n51

`

b0,nsin
npx

l
1b1,ncosu sin

npx

l D G .

~21!

Again the first term on the right-hand side represents
eccentricity of the core with respect to the pipe axis,
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second term is the constant radius of the core in case
absence of a wave, and the third term represents the w
shape. It can be seen from Eq.~16! that for snake waves a ne
hydrodynamic force is possible ine2 approximation. So even
when the wave shape in thex direction for the snake wave i
chosen to be equal to the one for the bamboo wave, thu
dependence of the snake wave changes the calculation
foundly.

We have studied core-annular flow for a core with a sna
wave in more quantitative detail. The dependence onu is
clear from Eq.~21!. The shape in thex direction was chosen
in such a way that atu50 it was identical to the shape of
bamboo wave. This was done according to the followi
procedure. We selectedu50. In that case in Eq.~21! only
cosnpx/l and sinnpx/l terms are present with coefficien
(ao,n1a1,n) and (bo,n1b1,n). These coefficients were dete
mined by selecting a bamboo-wave shape from Baiet al. @5#
and calculating the Fourier components for this wave. T
contribution of the Fourier components was then split o
ao,n and a1,n and overbo,n and b1,n in such a way that the
snake wave shown in Fig. 3 was found. As with theu de-
pendence many more possibilities exist for thex dependence.

In our calculation for the core with a snake wave w
studied the flow of the liquid in the annular layer. A helica
like flow field was found. Some typical streamlines a
shown in Fig. 3. This flow field is different from the on
calculated by Ooms and Beckers@11# for the case of a
sawtooth-shape wave. In that case an oscillatory-like fl
field was found: superposed on the main flow in the len
direction of the pipe there were oscillating secondary flo
on both sides of the core.

For the snake wave witham,n and bm,n coefficients as
described above we have calculated the dependence ofDr/r
as a function of the relevant parameters given by Eq.~17!.
For that purpose the eccentricity parametera1,0 and the am-
plitude parametere were chosen to have certain value
Some results are given in Fig. 4 and Fig. 5. In Fig. 4 t
~dimensionless! density difference~which can be counterbal
anced! is shown as function of the~dimensionless! thickness
of the annular layer for three values of the ratio Fr/Re. In F
5 it is given as a function of the~dimensionless! wavelength.
It is clear that the film thickness has a significant influen
whereas the dependence on the wavelength is negligible.

FIG. 3. Sketch of a core with ripple in the form of a snake wav
1-5
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dependence on Fr/Re5Wn/gR2 is also considerable.n is the
kinematic viscosity of the liquid. With increasing values
Fr/Re larger density differences can be counterbalanced

We have made some additional calculations for the c
of oil-water core-annular flow. We chooseR50.1 m, l
50.01 m,m50.001 Pa s,e50.01, anda1,050.5. For these
value of the parameters we show in Fig. 6 the levitation fo
on the core as a function of the core velocity. Also three lin
are given, which indicate which levitation force is needed
counterbalance density differences ofDr51.1 kg/m3, Dr
55 kg/m3, and Dr510 kg/m3. In practice density differ-
ences between oil and water are of the order 10 kg/m3. As
can be seen oil velocities of the order 0.5 m/s are sufficien
levitate the oil core. Such velocities are certainly possible
practice. Similar results for oil-water core-annular flow a
given in Fig. 7 and Fig. 8. They show the dependence of
levitation force on the wavelength and on the water fi
thickness, respectively. The levitation force increases w
increasing wavelength and decreasing water film thickne

FIG. 4. Dr/r as function ofH2
(0) for three values of Fr/Re

(a1,050.5, e50.02).

FIG. 5. Dr/r as function ofL for three values of Fr/Re (a1,0

50.5, e50.02).
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Finally we show in Fig. 9 the axial force on the core
function of the axial velocityW. The contributions of the
main flow and of the secondary flow are plotted separat
At small core velocities the contribution of the seconda
flow is dominant. At large core velocities the contribution
the secondary flow becomes negligible and the frictio
force is mainly due to the flow in the axial direction of th
pipe.

IV. DISCUSSION

A theoretical model, based on the hydrodynam
lubrication theory, for core-annular flow through a pipe h
been developed. According to this model the movemen
the rippled core with respect to the pipe wall induces pr
sure variations and secondary flows in the annular liqu
which can exert a net lubrication force on the core in t

FIG. 6. Levitation force as function of velocityW (a1,050.5,
R50.1 m, l 50.03 m,m50.001 Pa s,e50.01, h2

(0)50.002 m).

FIG. 7. Levitation force as function of wavelengthl (a1,0

50.5, R50.1 m, h2
(0)50.01 m, m50.001 Pa s, e50.01, W

51 m/s).
1-6
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vertical direction. For a ripple in the form of a snake wa
this force can be so large that it counterbalances the bu
ancy force on the core allowing a steady core-annular flow
arise. For a ripple in the form of a bamboo wave this is n
possible.

In our calculations we have neglected inertial forces.
was shown by Baiet al. @5# inertial forces are likely respon
sible for the levitation of a core with bamboo waves. Depe
dent on the Reynolds number of the liquid flow in the ann
lus it can, therefore, be expected that also for snake wa
the inertial forces can have a significant influence on c
levitation. For that reason we will in our future work includ
the inertial forces when studying core-annular flow w

FIG. 8. Levitation force as function of water film thicknessh2
(0)

(a1,050.5, R50.1 m, l 50.03 m, m50.001 Pa s, e50.01, W
51 m/s).
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snake waves at the core surface. Also the influence of
turbulence in the annular layer will be included following th
work of Oliemans@15#.

At the moment three theoretical models exist for expla
ing the counterbalancing of the buoyancy force:~1! the
hydrodynamic-lubrication-force model of Ooms, Olieman
and co-workers,~2! the inertial-pressure-force model of Ba
Joseph, and co-workers, and~3! the interfacial-tension-force
model of Bannwarth. It is necessary to compare the rela
importance of the levitation mechanisms described by th
models as function of the values of the relevant parame
of core-annular flow. We will, therefore, pay attention to th
comparison.

FIG. 9. Axial force as function of the oil core velocity (a1,0

50.5, R50.1 m, l 50.03 m, m50.001 Pa s, e50.01, h2
(0)

50.002 m).
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